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Summary 
The aim of this work is to manage business processes based on the forecasting of the 

decarbonization market and related products. The methods used in this study include general 
scientific methods (analysis and synthesis, induction and deduction), theoretical research meth-
ods (abstraction, theoretical modeling. The importance of by-products in the metallurgical 
industry is demonstrated, including dust and sludge, hot rolling scale, iron ore, fine fractions 
of agglomerate, pitch, and sulfur. Based on the dynamic trend of retrospective data on steel 
production from the World Steel Association for the period 2003-2022, trends were analyzed 
and forecast indicators were developed. LCA inventory data (using OpenLCA software), calcu-
lated using the Environmental Footprint method (Mid-point indicator) considering a projected 
steel volume of 2,231 thousand tons, assessed environmental impacts. The results indicated the 
greatest impact on environmental indicators. The forecasted capacity of potential decarboniza-
tion markets and related products was determined. The most significant segments of the global 
steel market for by-products will be: sludge, tails, stockpiled
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1. Introduction

Predictive business process management is essential for supply chain management, espe-
cially in the metal mining industry, which faces significant fluctuations in supply and demand. 
In this context, exponential smoothing methods have gained prominence due to their inherent 
simplicity and high accuracy. Time series methods are fundamental methods for forecasting 
any process and phenomenon. The purpose of this paper is to demonstrate the effectiveness of 
Brown's model in forecasting world steel production. By analyzing dynamic data and apply-
ing smoothing techniques, we can create forecasts that provide a clearer picture of production 
trends. In addition, this study incorporates life cycle assessment (LCA) to evaluate the environ-
mental impacts of steel production processes. LCA provides a comprehensive framework for 
assessing the environmental impacts associated with the various stages of product production

2. Materials and methods

2.1 Brown's double smoothing model
Exponential smoothing methods are very popular in supply chain management 

(Fliedner, 1999) and business analytics (Dekker, M. and etc, 2004) due to their simplicity, 
transparency and accuracy (Gardner, 1985). They are based on the assumption that observed 
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time series can be additively or multiplicatively decomposed into levels, trends and seasonal 
patterns. These models are widely used in various empirical applications to filter out random 
variations in observed series and to identify underlying trends and seasonal fluctuations. Apart 
from their long tradition, they are nowadays one of the most recommended tools for time series 
forecasting. Despite their advanced age, they have shown surprisingly good forecasting per-
formance compared to more sophisticated approaches (Makridakis & Hibon, 2000). Also, the 
literature on exponential smoothing has grown rapidly in the last few years (Smyl, Liu and etc, 
Rendon-Sanchez & de Menezes).

In this article, it is shown that the exponential smoothing method may give more accu-
rate steel market forecasting results compared to the state-of-the-art methods. This fills a 
gap in the existing literature on the use of exponential smoothing methods for the purpose of 
forecasting the dynamics of steel production dynamics of the steel product of the metallur-
gical industry.

Brown's model consists of the following equations:
Smoothing data

a y a bi t t t� � � �� �� �( )( )1 1 1                                                (1)

Smoothing the trend

b a a bt t t t� � �� �� �( )( )1 11                                                  (2)

Forecast for the period

                                                  t k y a b kt k t t� � ��:                                                       (3)

where at  — smoothed value of the forecast indicator for the period t; bt  - trend increment 

estimation, showing the possible increase or decrease of values in one period; α  – smoothing 

parameter (0 ≤ α  ≤ 1). Parameter α  can be determined by the following formula: � �
�
2

1n
; 

k – the number of time periods for which the forecast is made.
The smoothing parameter α is chosen subjectively or by minimising the forecast error. 

Larger values of the parameter will result in a faster response to changes. The larger the param-
eter, the more the data are smoothed.

In order to use the equations to obtain a forecast, it is necessary, to define the initial con-
ditions. Firstly, the initial condition for smoothed data can be set equal to the first observation, 
with the initial condition for trend being zero. Second, the initial condition for the smoothed 
data may be defined as the average of the first k observations. Then the initial condition for the 
trend can be estimated by the slope of the line formed by these k points.

The main indicators of Brown's model, which characterise it: trend equation, forecast 
value of the volume of world steel production, forecast abbreviation, evaluation criterion of 
model adequacy (Student's criterion), lower and upper boundary of the forecast
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2.2 Method of product life cycle assessment
Life Cycle Assessment (LCA) is based on the ISO 14040-14044 standards, which describes 

four steps in its development: purpose and scope definition, inventory analysis, impact assessment 
and interpretation (ISO. ISO 14044:2006. 2006). The life cycle includes stages such as raw mate-
rial extraction, production, product components and the product itself, use and recycling or final 
disposal. It is important to note that it is not necessary to prepare an LCA with all life cycle stages; 
it can be adapted to the needs of the project. A life cycle inventory analysis is a compilation of all 
environmentally relevant inputs and outputs of a system that are derived or adapted from primary 
and secondary data. All inputs and outputs are quantified according to functional units. The impact 
assessment phase involves the use of characterisation models that include emission and resource 
use factors that are used to convert environmentally relevant input and output data into life cycle 
environmental impact indicator results. The use of LCA has proven to be very useful in the char-
acterisation of steel product production by different methods (EAF, BOF).

LCA is a standardised methodology for quantifying and analysing the full life cycle of 
products, technologies, systems and services, which can provide decision support for identify-
ing preferred options in terms of environmental impacts across a wide range of impact types. 
Thus, LCA modelling tools process and edit large amounts of process, material, and product 
data (Makepa and etc, 2023). 

There are a number of different LCA software: SimaPro software (Dutch company Pré-
Consultants) Versions: SimaPro 7.3.3 and SimaPro 8.0.3; GaBi is an LCA modelling software 
from the German company Thinkstep; OpenLCA (openLCA is a free and open source software 
for sustainability and life cycle assessment) (Sangma and etc, 2023). 

The openLCA 2.0 software was used to conduct LCA in this study. This software is a 
comprehensive open source tool for sustainability modelling and LCA developed by Green-
Delta. It allows modelling and analysing the life cycle of a product or service in a clear and 
methodical manner, adhering to the ISO 14040 series of recommendations. OpenLCA software 
also enables LCA studies using a database from its library (Makepa and etc, 2023).

Worldsteel database was used in this study. This study contains global and regional LCI 
data for 16 steel products ranging from hot rolled coils to sheets, rebar, sections and coated steel. 

The study was conducted in accordance with the worldsteel LCI methodological report 
and ISO 14040 and 14044 standards and represents the most comprehensive and accurate LCI 
dataset for steel products produced worldwide.

3. Results and Discussion

The durability of steel allows many products to be reused after the end of their service life 
(the second level of the circular economy), the extension of the product's service life allows to 
avoid the need for transportation and remelting of steel, as well as the creation of new products 
(Belodedenko and etc, 2023). Over the last century, reprocessing of steel has saved 33 billion 
tons. of iron ore and 16 billion tons. coal (World Steel, 2023). By-products (coke, converter, blast 
furnace) are used as energy for technological purposes (Sui and etc, 2023), which can reduce 
the operating cost by 8-10% (Arastoa and etc, 2013). Smelting steel scrap from products after 
the end of their service life is the third level of the circular economy in steelmaking. About 650 
million tons of scrap is consumed annually for steel production, which makes it possible to avoid 
emissions of about 975 million tons. CO2 per year and reduces the use of basic material resources 
(World Steel. Blog, 2018).  Steel industry by-products have many uses within the industry, in 
other industries and in society as a whole. The following is a general list of applications for steel 
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industry by-products: blast furnace slag as a clinker substitute in the cement industry (Jiang and 
etc, 2020); steelmaking slag as aggregates in road construction (Jiang and etc, 2020; Sukmak 
and etc, 2023) and soil improvement (Fisher & Barron, 2022); dust and sludge as internal and 
external applications for iron oxides and alloying elements (Sui and etc, 2023); petrochemicals 
from coke production – tar, ammonia, phenol, sulphuric acid and naphthalene for the chemical 
industry; mill emulsions and waste oil – reducing agent in blast furnaces or used at coke plants.

A number of by-products with a high iron content are generated throughout the steelmak-
ing process. These include dust and sludge from wet and dry decelerating equipment, mill scale 
from the hot strip mill, as well as iron ore and sinter fines. Tar is a by-product of coking and is 
used as a material for sealing materials in the construction sector, as well as for the production 
of paints and synthetic dyes. Tar can be further processed and used in consumer products such 
as soap and shampoo to treat dandruff and skin diseases (psoriasis) (Ma and etc., 2021). Sul-
phur is used to vulcanise rubber and produce sulphuric acid, and is also used in insecticides and 
fertilisers (Ma and etc., 2014). 

Table 1
Co – products of the circular economy concept

Product Process Composition of substances
Cement (Sample S-NS-90) Mechanical and hydration 

properties of low clinker cement 
containing high volume superfine 

blast furnace slag

 OPC – 10%; SFBFS – 89%; NS – 1%
OPC – ordinary portland cement

OPC (21.99% – SiO2 5.92% – Al2O3 3.26% – 
Al2O3  58.64% – CaO 1.98% – MgO 0.74% – K2O 

0.27% – Na2O 2.6% – SO3 3.5% – LOI)

SFBFS – substituting part of cement clinker with 
superfine blast furnace slag

(34.39% – SiO2 13.78%– Al2O3 0.19%– Al2O3  
40.26%– CaO 7.43%– MgO 0.44%- K2O 0.3%- 

Na2O 1.92%– SO3 0%– LOI)
Electric arc furnace slag 

(EAF)
Electric arc furnace slag (EAF) 
as recycled road construction 

materials

30.66% – CaO 23.9% – Fe2O3 21.61% – SiO2 
10.14% – MgO 5.10% – Al2O3 4.39% – MnO2 

1.55% – Cr2O3 1.33% – SO3 0.77% – ZnO 0.52% 
– TiO2 0.03% – ZrO2

Functionalized and unfunc-
tionalized basic oxygen 

steelmaking slag

Effect of functionalized and 
unfunctionalized basic oxygen 

steelmaking slag on the growth of 
cereal wheat (soil improvement)

Unfunctionalized BOS slag; Isosteric acid; Lauric 
acid; Lanolin; Cysteic acid

BFG development prospects of metal-
lurgical by-product gas utilization

25.0~30.0 –CO/%; 1.5~3.0 – H2/%;55.0~60.0 – 
CO2/%; 0.2~0.4 – O2/%; 1.29~1.30 – density/(kg/

m³); 3000~3800 – calorific value/(kJ/m³)
The advantages are low cost and the possibility of 

widespread use as a gaseous fuel
LDG development prospects of metal-

lurgical by-product gas utilization
60.0~70.0 – CO/%; 0.0~3.0 – H2/%;  0.0~1.0 – 
CH4/%; 10.0~20.0 – N2/%; 15.0~20.0 – CO2/%; 
0.0~2.0 – O2/%; 1.69~1.76 – density/(kg/m³); 

6800~10000 – calorific value/(kJ/m³)
It can be directly used for fuel combustion, and 
as a raw material for the chemical production of 

high-value products
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COG development prospects of 
metallurgical by-product gas 

utilization

55.0~60.0 – H2/%;  22.0~28.0 – CH4/%; 
6.5~10.0 – CO/%; 3.0~5.0 – N2/%; 1.0~3.0 – 
CO2/%; 0.3~0.8 – O2/%; 2.0~3.0 – CmHn/%; 

0.45~0.48 – density/(kg/m³); 17,580~18420 – 
caloric value/(kJ/m³)

The development of COG for high-value 
production, such as that of pure hydrogen, 

methanol, ammonia, NG, and other syngases
High-temperature coal tar 

(HTCT)
High-temperature coal tar is 

an important raw material for 
obtaining value-added aromat-

ics
TP, the HP of HTCT, is the 

main raw material for carbon 
fibers (CFs), plastics, high-tem-

perature resistant materials, 
and electrode materials

0.5 ~ 1.0 – benzene, toluene, xylene, and 
other alkylbenzene; 2 ~ 4 – phenol, cresols, 
xylenols, naphthalene, and pyridine base; 

9 ~ 12 – naphthalene, phenol, cresols, 
xylenols, and heavy; 6 ~ 9 – naphthalene, 

anthracene, and fluorene; 20 ~ 24 – anthracene 
and phenanthrene;

50 ~ 55 – CTP

Thus, the metallurgical sector has a well-founded concept of a closed cycle economy 3 
R + co-P (reduce, reuse, recycle, co-products).

According to the statistics of the World Steel Association, in 2021, about 1.4 billion 
tons of steel were produced in the world's converters, based on about 1.3 billion tons. domain 
resources and about 240 million tons. scrap The world production of EAF was about 30% of 
the world steel production (560 million tons), which required 60 million tons. blast furnace 
production, 120 million tons DRI (direct recovery iron) and 450 million tons of scrap. The aver-
age limited results of the accompanying products, which are obtained during the production 
of 1000 kg of EAF steel: slag (85 kg); dust (10 kg); recovered steam (41.3 kg), converter gas 
(105 m3), renewable steam (41.3 kg).; 1000 kg of BF/BOF steel: slag (298 kg); dust (925 kg); 
blast furnace gas (1392 m3), energy (36.44 kW) (Liu and etc., 2020). The average absolute 
growth in global steel production over the period 2003-2022 is 48.1 thousand tons, with an 
average annual increase of 3.5%. Thus, we can observe an analytically sound pattern of growth  
(Table 6), which can be used as input data for Brownian forecasting calculations (He and 
etc., 2017).

Table 2
Global steel production in 2003-2022

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Actual production of 
steel, thousand tons 971 1063 1148 1250 1350 1345 1241 1435 1540 1563

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Actual production of 
steel, thousand tons 1635 1675 1624 1633 1737 1828 1877 1882 1962 1885

The relevance of the model is justified by the further dynamic development of the 
markets of decarbonization and related products (El Hafdaoui and etc., 2023; Pavlenko 
and etc., 2020). The defined functional econometric model will be practically significant 
if in the future the total volume of sludge, slag, metal scrap and gases (converter and blast 

Continuation of table 1
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furnace) will increase, and this depends primarily on the dynamics of the main product of 
metallurgical enterprises – steel. Based on the dynamic trend of retrospective steel produc-
tion data of the World Steel Association for the period 2003-2022. consider the trends of 
a certain series. In the practice of statistical forecasting of trends, Brown's model is most 
often used, which belongs to adaptive forecasting models that are able to quickly adapt their 
structure and parameters to changing conditions. The forecasting tool in adaptive models, as 
well as in growth curves, is a mathematical model with a single factor "time" (World Steel 
in Figures, 2022).

In order to use the equations to obtain a forecast, it is necessary to define the initial 
conditions. First, the initial condition for the smoothed data can be set equal to the first 
observation, with the initial condition for the trend (bt-1) equal to zero. Second, the initial 
condition for the smoothed data can be defined as the average of the first k observations. 
Then the initial condition for the trend can be estimated by the slope of the line formed by 
these k points.

The parameter α can be determined by the following formula:

� �
�

�
�

�
2

1

2

20 1
0 0952

n
,

As y0 we take the arithmetic mean of the first 3 values of the series.

y  = (971 + 1063 + 1148)/3 = 1060,6670

The slope angle of the line formed by the 3 points of the first realisation can be found 
using the least squares method.

The linear trend equation has the following form y = bt + a. The trend equation is 
obtained: y=88.5·t+883.667

The empirical trend coefficients a and b are only estimates of the theoretical coefficients 
βi, and the equation itself reflects only the general trend in the behaviour of the variables under 
consideration.

The trend coefficient b = 88.5 shows the average change in the resultant indicator (in 
units y) with the change in the time period t per unit of its measurement. In this example, with 
an increase in t by 1 unit, y will change by 88.5 on average.

The time dependence of y on time t has been studied. A linear trend was chosen at the 
specification stage. Its parameters were estimated by the method of least squares. The economic 
interpretation of the model parameters is possible – with each period of time t the value of Y 
increases on average by 88.5 units.

Initial conditions for trend estimation are equal to bнач = 88.5
a1 = 0,0952*1060,667+(1-0,0952)*1060,667 = 1060,667 

a2 = 0,0952*1063+(1-0,0952)(1060,667+88,5) = 1140,964 
b2 = 0,0952(1140,964-1060,667)+(1-0,0952)*88,5 = 87,719 
a3 = 0,0952*1148+(1-0,0952)(1140,964+87,719) = 1221,002 
b3 = 0,0952(1221,002-1140,964)+(1-0,0952)*87,719 = 86,988 
a4 = 0,0952*1250+(1-0,0952)(1221,002+86,988) = 1302,469 
b4 = 0,0952(1302,469-1221,002)+(1-0,0952)*86,988 = 86,462
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Table 3
Auxiliary table for calculating the forecast indicator according to the Brown's model
i yt Data smooth-

ing, at

Trend smooth-
ing, bt

Forecast, yt
* (yt-yt

*2)

1 971 1060,667 88,5 1060,667 8040,111
2 1063 1140,964 87,719 1149,167 7424,694
3 1148 1221,002 86,988 1228,683 6509,693
4 1250 1302,469 86,462 1307,99 3362,784

… … … … …
19 1962 2145,869 59,296 2165,216 41296,548
20 1885 2174,686 56,394 2205,165 102505,81

Forecasting

y(20+1) = 2174.686 + 56.394 = 2231.08

The forecast error is determined by the formula:

s
y y

n
t t�
�

�
�

�
�� ( ) ,

,
2

2

808506 541

20 2
211 936

Let's determine the value of Student's criterion for the number of degrees of freedom k = 
n-m = 20-2 = 18 and level of significance 0.05: t(18;0.05) = 2.101

Lower forecast boundary:
y1=2231.08-211.936 = 1785.802
Lower forecast boundary:
y2=2231.08+211.936 = 2676.358

The LCA inventory data (OpenLCA software) calculated using the Environmental Foot-
print (Mid-point indicator) method (Table 4), taking into account the forecasted quantity of steel 
in the amount of 2231 thousand tonnes, determined the environmental impact. As a result, the 
greatest impact on environmental indicators was obtained: Aquatic eco-toxicity (-2.26281e+8 
Item); Climate change (-1.22161e+8 kg), Land use (-2.19191e+8). The indicators are summa-
rised in the table (the standard is taken as follows Steel cold rolled coil Global 2020 database 
World Steel Organization)

Table 4
LCA inventory data Steel cold rolled coil Global 2020 database (WSO)

Indicator Steel cold rolled coil 
Global 2020 Unit

Abiotic resource depletion -3.49350e+2 kg
Acidification -5.54452e+4 mol

Aquatic eco-toxicity -2.26281e+8 Item(s)
Aquatic Eutrophication -6.83524e+4 kg
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Cancer human health effects -1.73367e-12 Item(s)
Climate change -1.22161e+8 kg

Ionizing radiation -1.02574e+6 kBq
Land use -2.19191e+8 Item(s)

Non-cancer human health effects -3.05004e-1 Item(s)
other -2.84398e+8 m3

Ozone depletion -5.55552e-7 kg
Photochemical ozone creation -2.31107e+5 kg

Respiratory inorganics -2.82951e+0 Item(s)
Terrestrial Eutrophication -2.42566e+5 mol

As a result of the assessment of the product life cycle of metallurgical enterprises  
(Table 5), the most significant segments of the global steel market will be: sludge  
(4,06E+04 kg); tails (5,81E+06 kg); exits put in storage (3,19E+08 kg); carbon dioxide 
(8,48E+02 kg).

Table 5 
Segments of the ancillary services market were calculated using  

the product life cycle model

Outputs Amount (1 kg) (Steel cold 
rolled coil Global 2020)

Segments of the global 
steel market Units

Materials production
carbonyl sulphide 3,78E-20 8,43E-11 kg

Gypsum 9,03E-17 2,01E-07 kg
Iron sulphate dissolution 1,21E-16 2,70E-07 kg

Water (desalinated; deionised) 4,04E-25 9,01E-16 kg
Waste

Cold rolling emulsion treatment sludge 1,82E-05 4,06E+04 kg
Hazardous waste (deposited) 1,49E-08 3,33E+01 kg

Hazardous waste (underground 
deposit) 6,42E-17 1,43E-07 kg

High radioactive waste 6,03E-10 1,35E+00 kg
Low radioactive wastes 1,11E-08 2,47E+01 kg

Medium radioactive wastes 5,31E-09 1,18E+01 kg
Overburden (deposited) 0,002602 5,81E+06 kg

Paper (unspecified) 6,03E-21 1,35E-11 kg
Radioactive tailings 5,67E-07 1,26E+03 kg

Slag (deposited) 4,01E-12 8,95E-03 kg
Tailings (deposited) 0,247023 5,51E+08 kg
Waste (deposited) 0,142926 3,19E+08 kg

Emissions to lower stratosphere and upper troposphere
carbon dioxide (fossil) 3,80E-07 8,48E+02 kg

Methyl borate 3,82E-23 8,52E-14 kg
Noble gases, radioactive, unspecified 3,15E-29 7,03E-20 kBq

Continuation of table 4
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Emissions to urban air close to ground
Benzal chloride 2,44E-27 5,44E-18 kg

Chlorosilane, trimethyl- 1,69E-24 3,77E-15 kg

Therefore, one of the solutions to this issue is to synthesize the proposed concept of 
a circular economy with the concepts of ELFM (Extraction of valuable materials from land-
fills) and EWM (Enhanced waste management). EWM consists of two pillars, the first of 
which is built on the idea that future landfills will become temporary storage sites or future 
mines for materials that cannot be directly processed using existing technologies or have 
clear potential for more efficient processing in the near future. The second pillar is essen-
tially the ELFM concept itself. As for this second ELFM component, it aims to increase 
the value of waste streams in landfills. The trends of these concepts will affect local and 
regional budgets of cities, as a significant amount of landfill tax revenue will be lost due to 
the implementation of these concepts. Considering an average tax rate of 42 euros [68], the 
total amount paid to local budgets globally, only from the metallurgy industry, will exceed 
36 million euros.

4. Conclusions

Using the forecast trend of global steel production based on the Brown's adaptive model 
and taking into account the output of products using the LCA method, the article determines the 
forecast capacity of potential markets for decarbonisation and related products. The most sig-
nificant segments of the global steel market for by-products will be: sludge (4,06E+04 kg); tails 
(5,81E+06 kg); exits put in storage (3,19E+08 kg); carbon dioxide (8,48E+02 kg). As the fur-
ther positive trend of global steel production will lead to the expansion of co-product segments 
and increased pressure on the environment (climate change, ecotoxicity of water resources, soil 
damage), which is proven in the study, this problem identification provides valuable informa-
tion for local governments, helping to shape the vector of development of the industrial sector 
and possible prospects for transformation of some old industrial regions with a significant per-
centage of primary and secondary eco-industrial sector.

Product Life Cycle Assessment of the metal mining sector provides senior and mid-
dle-level decision makers with an understanding of how to balance the operating cycle, future 
financial performance and possible changes in environmental conditions. Understanding the 
quantitative composition of industrial end products enables the implementation of circular 
economy levels to avoid a significant tax burden on solid waste.
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