
324

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

METHODS OF DEVELOPING INTEGRATED MODULAR AVIONICS SYSTEMS 

Yuliia Kovalenko
Candidate of Pedagogical Sciences, Associate Professor, 

National Aviation University, Ukraine
e-mail: yleejulee22@gmail.com, orcid.org/0000-0002-6714-4258

Summary
The development of modern avionics systems makes the design of such systems impos-

sible without the use of automation tools. Currently, the area of such tools is represented by 
patented tools developed by major aircraft manufacturers such as Boeing and Airbus, as well 
as a number of open or partially open international projects, differing in terms of validity, 
availability of source code and documentation. All tools are based on architectural models of 
the developed system. This article discusses the languages available for describing architec-
tural models of avionics systems and shows which programming language is most appropriate 
due to its textual notation and embedded concepts that are well suited to represent most of the 
elements of embedded systems. The article then presents a set of tools for designing modern 
avionics systems. The toolbox provides both a general platform for designing and analyzing 
architectural models and a specialized solution for a specific area of avionics systems. It sup-
ports creating, editing and manipulating models in both text and graphic formats.

Keywords: information systems, decision-making support, project in the aviation indus-
try, automated design system, technological process, integrated modular avionics.

DOI https://doi.org/10.23856/4341

1. Introduction

The development of modern avionics systems and other safety-critical control systems 
requires advanced methodological and instrumental support. There are appropriate tools avail-
able, but the development of such high-tech domestic industries as aircraft construction cannot 
rely on them alone for at least two reasons. First, such tools are quite expensive; secondly, and 
probably more importantly, they are “closed” for development and adaptation by domestic 
researchers and engineers, which leads to an even greater backlog of available technologies in 
this area.

Tools for the design, development, verification and validation of avionics-type systems 
traditionally support the model-based approach to model development (Model Driven Engi-
neering – MDE, and Model Driven System Engineering – MDSE), as modeling methods in 
their various forms: full-scale, semi-natural, mathematical – are always utilized in aircraft con-
struction and related industries (Hayley and other, 2012). In the last 20 to 30 years, a new type 
of modeling has appeared in the field of software development, related to research on formal 
program specifications and the use of so-called formal methods for analysis – in particular, for 
verification of software systems. Avionics systems today are a complex interaction of software 
and hardware, so the methods and approaches developed in the field of design and analysis 
of avionics and software systems should enrich each other. For this reason, the use of formal 
methods of verification of complex software and hardware systems, such as operating systems 
and microprocessors, allowed us to quickly master the development of design and integration 



325

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

of avionics systems, as many problems in this new area can be solved based on modeling tech-
nologies and verification (Parkinson and other, 2015). 

This article focuses on the development of methods for modeling, synthesis and verifi-
cation of complex aircraft systems, but the scope of potential application of these technologies 
is much wider.

2. Integrated modular avionics

Currently, the main approach to the design and development of on-board systems of civil 
aircraft is the approach of integrated modular avionics. According to this approach, special-
ized controllers are replaced by general-purpose processor modules, which provide indepen-
dent operation of different aviation systems. The wires of each aviation subsystem are replaced 
with virtual connections within a switched network infrastructure based on technologies such 
as AFDX (Avionics Full DupleX Switched Ethernet) (Tiedeman and other, 2019) and CAN 
(Controller Area Network) (Ghannem and other, 2017). This reduces unreasonable duplica-
tion of hardware, which leads to unacceptable levels of power consumption and complexity of 
the on-board equipment system (Neretin, 2019). But, on the other hand, this approach greatly 
complicates the process of software and hardware development, posing new challenges in the 
design and integration of software and hardware (Murphy and other, 2009).

With the introduction of the IMA approach in the complex of on-board equipment of 
the aircraft, there is a new subsystem that provides a hardware platform for the software of 
other on-board systems. This subsystem is called the IMA platform and codenamed ATA-42. 
The team responsible for designing, configuring and verifying the IMA platform is usually 
called the System Integration Group, as its task is not only to develop a stand-alone subsystem, 
but also to coordinate the needs of all platform users and ultimately integrate the entire software 
and hardware components using the IMA platform (De Niz D, 2007).

The tasks of the System Integration Group also include: 
•	 clarification/coordination of discrepancies between requirements and needs with soft-

ware and hardware developers;
•	 proecting the IMA platform based on the needs of functional applications in hardware 

resources, including:
a. distribution of functional applications from computing modules (Core Processing 

Module – CPM) taking into account the needs of applications (amount of CPU time, distribu-
tion of CPU time between strictly periodic applications, RAM/ROM memory, network inter-
face bandwidth, etc.); 

b. determining the composition of network components (network topology), taking into 
account the requirements of reliability, delivery time of messages from sender to recipient, etc. 

•	 verification of the developed on-board equipment complex (OEC) for compliance 
with the requirements set forth in the design documentation for the aircraft, OEC and its indi-
vidual components; 

•	 preparation of configuration tables for IMA platform components.
To solve these problems requires an accurate understanding of all the details of the devel-

oped complex at both high and low levels of detail, as well as the greatest care in the analysis 
of the consequences in case of changes. Due to the size of the OEC and the number of essential 
parts of modern aircraft, it is impossible for one person to have complete knowledge of the full 
systems. In such conditions, the use of traditional development methods by specialists, based 
on a careful description of all requirements, architectural solutions, etc. in text documents, 



326

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

becomes excessively time-consuming and error-prone. The ability to utilize software automa-
tion to solve these problems encounters problems of heterogeneity and unstructured informa-
tion. A natural step to overcome this problem is the formalization of information, translating it 
into a unified machine-readable form, which allows automation of its processing. 

In the context of designing complex software and hardware systems such as the IMA 
platform, the main core is the architecture of the complex, around which the requirements for 
the system as a whole are designed, including its individual components, design trade-offs, 
analysis and verification, etc. Therefore, it is not surprising that it is the architectural models 
that describe the components of the system and the relationship between them become the basis 
for the formation of new technologies and tools for design automation. They allow different 
aspects of the architecture to be described in a single formalized model, which can be pro-
cessed by different tools to check the internal consistency of the architecture, meet the system's 
various requirements, automate design decisions, generate configuration data and files, source 
code, etc. Model analysis tools can be applied at different levels of abstraction, including at the 
earliest stages of the project in the presence of only partial and evaluative information. Among 
experts, this practice is called “Early Validation”, and associated sets of relevant tools (Early 
Validation Tools) (Gilles and other, 2010). 

The places for application of such tools in the process of designing and developing the 
IMA platform are shown in Fig. 1. 

Requirements for 
solid waste

Variation of solid 
waste

Architecture of 
solid waste

Software design 
(functional 

applications)

Variation of 
software (functional 

pplications)

IMA platform 
design

Allocation of 
hardware resources

Integration of 
software and IMA 

platform components

Clarification of the 
requirements for the 

IMA platform

Variation of the 
IMA platform

Development of software 
and components of the 

IMA platform
 

Figure 1. Validation during design and development IMA platforms

The use of architectural models in this area allows resolution of the following problems: 
1. Checking restrictions/requirements for the components of the developed complex: 
•	 checking the adequacy of hardware resources; for example, that the needs of all func-

tional applications in CPU time and memory meet the hardware characteristics of the comput-
ing module on which these applications will run; 



327

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

•	 checking the temporal characteristics of the interaction of functional applications or 
computing modules; for example, that the delivery time of a message from one functional appli-
cation to another does not exceed the specified requirements; 

•	 checking the possibility of allocating hardware resources in accordance with cer-
tain restrictions; for example, the ability to allocate CPU time for a set of strictly periodic 
tasks, taking into account that each task must be run at certain times according to a given 
period; 

•	 safety and failure analysis of individual components of the OEC (safety analysis). 
2. Automation of distribution of hardware resources between functional applications, 

taking into account defined restrictions; for example, distribution of functional applications 
on computer modules taking into account sufficiency of bandwidth of network interfaces and 
possibility of scheduled periodic tasks. 

3. Generation of elements of the BWC platform: configuration data / files, source codes 
of individual components of the platform, etc.

3. Description languages of architectural models

During the research in the field of design of software and hardware systems on the basis 
of models, several approaches to the description of architectural models were formed (table 1). 

Table 1
Languages for describing architectural models

UML AADL
Notations

• Provides a set of charts to represent the struc-
ture of the software; in this case, individual dia-
grams that describe certain components of the 
software and hardware complex that cannot be 
fully related to each other, i.e. combining models 
developed by different groups of developers is 
extremely difficult. Developed more in the tra-
dition of programming languages than descrip-
tions of diagrams; it operates with declarations 
of types and implementations of model compo-
nents that can be reused in declarations of other 
components. 

• developed more in the tradition of program-
ming languages than descriptions of diagrams; 
it operates with declarations of types and imple-
mentations of model components that can be 
reused in declarations of other components.

Extending
• Can be extended by using the following mech-
anisms:

• stereotypes, which allow to expand the UML 
dictionary to create new modeling elements;
• tags of identifiers and values (tagged values);
• redefinition of model elements with addi-
tional constraints.

These mechanisms are usually used by one 
or another profile, which is a dialect of model 
description (for example, SysML and MARTE). 

• Сan be extended by defining:
• user-defined property sets that can add 
new property types and definitions or extend 
existing types and properties;
• annex-specifications, which allow to 
describe additional characteristics of model 
elements in arbitrary syntax and with arbi-
trary semantics, which are processed by spe-
cialized tools.



328

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

Aspects of modeling
• used mainly to describe the structure of the 
software; it is based on three aspects: data, inter-
action and state; data is described by class dia-
grams, interaction is described by connection dia-
grams or sequence diagrams, states are described 
by state diagrams. The most used SysML and 
MARTE profiles extend UML as follows:

• SysML adds two types of charts – the 
requirements chart and the parametric chart; 
the requirements diagram is used to describe 
the requirements and link the requirements to 
the elements of the model; parametric diagram 
is used to describe the relationships of soft-
ware model components with hardware model 
components.
• MARTE expands UML by introducing the 
following stereotypes: software model, hard-
ware model, the relation between software and 
hardware models.

• used to describe the “execution architec-
ture”. “Execution architecture” is implic-
itly divided into two parts: a set of software 
components and interaction between them, a 
set of hardware components and interaction 
between them; also describes the relationship 
between software components and hardware 
components.

The most widespread approaches are based on AADL (Martin and other, 2006), EAST-
ADL (Zelenov, 2011) and UML (Konakhovych and other, 2020). The EAST-ADL language is not 
considered in this paper because its scope is limited to automotive systems based on AUTOSAR 
architectural solutions. AADL inherited the main features from the Meta-H language, developed 
to describe on-board avionics systems in the late 1990s, and is now the most common language 
for describing architectural models of software and hardware systems in various application areas. 
UML is most often used to describe software and hardware systems in the form of one of its pro-
files, the most popular of which are SysML (Kovalenko and other, 2020) and MARTE (Kozlyuk 
and other, 2020). Below are the main features of these languages (Kovalenko and other, 2020). 

Based on the above, it can be concluded that both UML (in the form of SysML and 
MARTE profiles) and AADL provide approximately the same capabilities to describe the soft-
ware and hardware model of the OEC. At the same time, AADL has a number of advantages:

•	 In addition to graphical notation, AADL has a text representation that will allow a special-
ist to create and edit models, as well as analyze the semantics of existing models without specialized 
editors, while “reading” UML-based models without special chart editors can be an intractable task;

•	 AADL limits the developer to a specific set of declaration types (model element 
types) that have specific semantics that the developer can use to describe the firmware model, 
allowing you to reuse existing models developed by independent teams at no additional cost. 
At the same time, UML, due to its versatility, does not impose strict restrictions on the types 
and semantics of the elements used, which complicates the understanding of models devel-
oped by third-party experts.

4. MASIW – a system integrator workstation

Given the above features, the AADL language was chosen as a formalism to describe 
architectural models in research in the field of automation of software and hardware systems. 

Table 1 (Continuation)



329

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

The research pursues a dual goal, consisting of a research component – the development 
of methods for modeling and verification of complex software and hardware systems, and an 
engineering component – the development of working tools for designers and integrators of 
avionics systems.

The basic principles on which research and tools are built are as follows:
•	 openness – as a necessary condition for cooperation with the international research 

community;
•	 reliance on international standards;
•	 a combination of mathematical rigor in the choice of proposed solutions and ensuring 

the availability of these solutions for engineers;
•	 focus on support and integration of various processes of the life cycle of systems: 

definition and analysis of requirements, design, integration and verification of software and 
software and hardware systems.

Currently developed MASIW tools allow to solve such tasks.
1. Creating, editing and managing models in AADL:
a. creating / editing models using a text or graphic editor;
b. suport for team development with the ability to track and make changes to individual 

elements of the model;
c. support for the re-use of third-party AADL models.
2. Analysis of models:
a. analysis of the structure of the software and hardware complex – the sufficiency of 

hardware resources, consistency of interfaces, etc.;
b. analysis of data transmission characteristics in the AFDX network – time of delivery 

of messages from sender to recipient, depth of queues of transmitting ports, etc.;
c. simulation of a model of software and hardware with the generation of user-defined 

reports on the results of the simulator.
3. Synthesis of models:
a. the distribution of functional applications from computing modules, taking into 

account the resource constraints of the hardware platform and taking into account additional 
constraints on the reliability and security of software and hardware;

b. generation of CPU computing time allocation between functional applications (appli-
cation launch schedule cyclogram for ARINC-653 compatible real-time operating systems).

4. Generation of source code / configuration data:
a. development of specialized code / configuration data generation tools, based on the 

provided software interface (API);
b. generation of configuration files for VxWorks653 RV and AFDX network end devices.
Model creation, editing and management, as well as code and configuration data gener-

ation are implemented using common Eclipse environment extensions, such as Eclipse Model-
ing Framework, Graphical Editing Framework, Eclipse Team Providing, SVN Team Provider, 
GIT Team Provider. When implementing these capabilities, we mainly had to solve engineering 
problems, so in the following sections we will focus in more detail on the implementation of 
support for analysis and synthesis of models, where the main research tasks were concentrated.

5. Analysis of models

When it comes to the analysis of models, it means the derivation of new properties of the 
model as a result of considerations about its already known properties. For example, the result 



330

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

of the analysis may be an estimate of the maximum time between sending a message and its 
delivery based on an analysis of the path of the message and the characteristics of the compo-
nents encountered in this path. The most important type of model analysis is its verification, ie 
verification of the model's compliance with the requirements for it. Other types of analysis are 
usually used as an intermediate step in the verification process.

Requirements for OEC architecture arise from a variety of sources.
•	 These may be design requirements for the aircraft and the OEC architecture – these 

requirements in the process of analysis are clarified and decomposed into requirements for 
individual components of the system.

•	 Project often regulates the requirements for the design and organization of architec-
tural models, which are described in the so-called model design standard.

•	 Another source of requirements is the restriction on the area of permissible use or on 
the permissible configurations of the simulated components (usage domain rules).

•	 The author of a library model component may impose requirements on the consistent 
use of this component.

•	 There are also requirements imposed by model analysis tools or tools that are neces-
sary to be able to perform the relevant analysis.

Since when modeling the system there is a need to detect errors as early as possible, 
the task is to analyze the model, which has unspecified components or components with a still 
unknown structure. Sometimes in such cases for some kind of analysis enough assumptions 
about the raw components. For example, the system has a process A with an unknown imple-
mentation. However, it is assumed or known that on average every 100 ms it generates a data 
packet with an average size of 100 bytes, intended for process B. In this case, the components 
that provide network interaction are described in detail in the model. Then such an incomplete 
model can be analyzed in terms of network interaction, process delays, buffer occupancy of 
network components, and so on.

6. Automatic synthesis of models

The designer of the IMA system has a task to build an architecture that must meet the 
requirements of different types: the adequacy of hardware resources, fault tolerance, reliability, 
security of the system as a whole, limiting the maximum allowable time for delivery of mes-
sages between components, requirements for timely functions etc.

To a certain extent, the art of experienced specialists, armed in addition with the tools of 
verification of the constructed architectural model, allows to solve such a problem. However, 
this approach has limited scalability and high subjectivity. System design automation tools that 
meet a set of requirements and constraints can make designers work much more efficiently.

In many cases, individual parts of the model can be automatically synthesized based on 
the information contained in another (“source”) part of the model, which describes the basic 
logical relationships between the components and the requirements for the resulting architec-
ture. In this case, the development of the original part of the model is much easier than the 
development of the corresponding synthesized part. In addition, the source part in any case 
must be described in the design process. For example, based on the source information about 
the available set of applications and their hardware requirements, as well as information about 
the architecture and capabilities of computing modules, it is possible to automatically synthe-
size the binding of applications to these modules to meet all resource adequacy and scheduling 
requirements.



331

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

The MASIW design environment offers the following work scenario for developing a 
model of the designed system. The designer develops the necessary source part of the model, 
then launches an automatic synthesis algorithm, which based on the available information con-
tained in the source part of the model, completes the architecture model with new parts, which 
can be adjusted manually or regenerated if the original part of the model is updated.

6.1. Automatic synthesis of schedules for strictly periodic tasks
When dividing hardware resources between several applications, one of the most import-

ant aspects is the timely provision of CPU resources for all tasks in the system. This aspect is 
usually dealt with by a special operating system task scheduling subsystem, which allocates 
CPU time to functional applications based on a pre-prepared schedule.

As initial data in the task of construction of the schedule for each of periodic tasks are set:
•	 task start period;
•	 task execution time on one start-up period.
Classical algorithms for scheduling periodic tasks work only when the start time of the 

task within the period is allowed to vary at different periods of its execution. However, there 
is currently a need to compile schedules in which the time between adjacent launches of one 
periodic task would be fixed and equal to the length of the period. This additional requirement 
of strict periodicity does not allow the use of classical planning algorithms in the scheduler.

The main difficulty of the algorithm for planning strictly periodic tasks is the search for 
starting points for all tasks, so that it was possible to build the actual schedule. This search is 
an NP-complete task.

In addition, we use the strategy of finding starting points implies a search in the first 
place of such options that provide the longest possible continuous execution of the first ticks 
after starting each task.

In general, this approach allows you to quickly get a solution to the problem of schedul-
ing for strictly periodic problems.

6.2. Automatic synthesis of IMA system architecture
As initial data in the problem of synthesis of architecture of IMA the following are set:
•	 functional applications and logical data flows between them, as well as between appli-

cations and sensors / actuators;
•	 a set of needs for functional applications to hardware resources (memory, computing 

power, etc.);
•	 a set of requirements for the maximum time of delivery / processing of messages in 

logical data streams;
•	 a set of available hardware components (computing modules, switches, etc.) in con-

junction with a description of their capabilities and limitations on the scope of their permissible 
use (usage domainrules).

You need to automatically build the architecture of the IMA system, which includes:
•	 composition and communication of hardware components;
•	 placement of functions on computing modules;
•	 details of the organization of connections in the AFDX-network;
•	 work schedule of application and system partitions ARINC-653 compatible operating 

systems.
The system architecture must meet all safety and performance requirements.
The synthesis task is divided into two major subtasks:



332

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

1. placement of applications from computing modules so that it was possible to build a 
schedule on each module;

2. assignment of virtual channels between computing modules and distribution of 
switches on virtual channels so as to meet the requirements for message delivery time.

The solution of the first problem is based on the consideration of the set of periods of 
application launch and on the application of numerical reasoning, which allow to divide the set 
of periods into such subsets that for each obtained subset there are guaranteed starting points of 
the corresponding applications.

The solution of the second problem is based on the use of genetic algorithms, at each 
step of the genetic algorithm is built a population consisting of N correct topologies of the 
AFDX-network. Each topology of the new population is obtained either as a result of a small 
modification (mutation) of some topology of the previous population, or as a result of crossing 
some two topologies of the previous population. When crossing, the resulting topology receives 
the maximum number of common properties (in the sense of connecting components together), 
which are in both source topologies.

After the next population is constructed, the incoming topologies are ranked in such a 
way that N topologies that best meet the requirements for message delivery time are selected 
for further construction. Static methods (Trajectory, Network Calculus) are used to estimate the 
delivery times obtained in this topology, and the main component of the ranking function looks 
like this:

Σ eT-τ,
where the summation is performed on all channels for which the delivery time limit is 

set, T is the delivery time for this channel in this topology, τ is the specified maximum delivery 
time for this channel.

7. Conclusions and suggestions

At the moment, the MASIW tool allows to perform only part of the tasks assigned to 
the system integration group and further plans to expand the functionality of its functionality 
in many areas.

In the context of static structural analysis of models, the main direction of development 
is the development of a full-featured language for describing constraints on the structure of an 
architectural model convenient for a compact description of both global and component con-
straints. In our opinion, this language should be based on one of the well-known existing pro-
gramming languages in order to be able to reuse ready-made libraries with a variety of function-
ality and simplify the task of training engineers. A good contender for the role of such a language 
is the Python language, which due to the concept of decorators provides an opportunity to form 
a specialized language based on standard syntax, which means the ability to use the existing 
interpreter and other tools unchanged for a new language. Other promising areas are the devel-
opment of libraries of ready-made parts of the code for their reuse in checking the conditions of 
correctness and the implementation of static structural analysis of reconfigured systems.

In the context of static behavioral analysis of models, a promising area of development 
of supported analysis methods is the analysis of data transmission in the system as a whole, and 
not only within the AFDX network. The main difficulty here is to take into account the behavior 
of all components of the gateways located between the sender / recipient of the message and 
the AFDX network.



333

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

In the context of dynamic behavioral analysis of models, the main direction of develop-
ment is to support standard ways of setting behavior for the components of the model (Behav-
ioral Model Annex, BLESS). Another very important area of development of this type of anal-
ysis is the implementation of the possibility of using the simulator in combination with a stand 
of semi-natural modeling and in combination with external emulators of hardware platforms. 
This will save time on developing detailed models for existing system components that are 
available for use on the stand or in a virtual environment, which reduces the total time and cost 
of preparation for testing the model.

In the direction of dynamic static analysis of models, only research work has been car-
ried out, so the implementation and conduct of experiments with this method of analysis is 
another task for the future development of the functionality of the tool.

In the context of automatic synthesis of models promising areas of development are the 
support of new types of constraints on the synthesized model, research methods of incremen-
tal synthesis of architecture and automatic updating of the model when changing the initial 
requirements taking into account manual modifications of previous synthesized models. the 
degree of criticality of each function ensured the smooth operation of the entire system, pro-
vided the possibility of failure of individual components.

Another area for the development of MASIW tools is the generation of documentation 
describing the architecture of the BWW system, as well as the generation of project templates 
and source code of functional applications that would already include typical functions such as 
message processing whose structure is already described in the architectural model.

The complexity of modern aviation systems and high requirements for their reliability 
lead to the need to use shared resources (IMA architecture). When creating IMA systems, devel-
opers (in particular, system integrators) face a number of tasks and problems that they have 
not encountered before. To solve these problems come to the aid of various automation tools 
and computer development support. The development of this area is primarily associated with 
the use of various models, including architectural models of software and hardware systems. 
The corresponding group of technologies is called Model Driven System Engineering (MDSE).

The implementation of MDSE technologies requires serious research and well-thought-
out engineering solutions. One of the sources of complexity in the development and implemen-
tation of MDSE is the need to take into account the needs and preferences of different groups 
of professionals, as models are used both as input for synthesis and verification, as a design tool 
and as a means of communication and cooperation. This article is devoted to the methods and 
tools for solving these problems. The article pays special attention to the issues of integration of 
methods of formal specification and formal analysis of avionics models with methods of design, 
implementation and integration of avionics systems, which were developed in this field earlier.

The MASIW tool simplifies the solution of a number of tasks related to the development 
of aviation systems. It allows you to conveniently and clearly create and edit models of such 
systems in AADL, as well as analyze such models for compliance with various requirements 
related to both the structure and behavior of the model (calculate various temporal characteris-
tics, predict the behavior of the simulated system in different situations, including non-standard 
behavior of components and failures within the system).

In addition, MASIW facilitates architecture design through the implementation of a 
number of model synthesis algorithms. This allows, in particular, to distribute the tasks on 
the computing units so that each task was allocated enough CPU time, and to generate an 
on-board network model and network resource allocation scheme according to the needs of 
system components.



334

SCIENTIFIC JOURNAL OF POLONIA UNIVERSITY 43 (2020) 6

The MASIW tool is constantly evolving. This development is based on close coopera-
tion with customers, potential users and with the international community of developers of open 
standards and open tools to support the development, integration and verification of responsible 
systems based on the use of modeling tools.

References

Hayley J., Reynolds R., Lokhande K., Kuffner M. and Yenson S. (2012) Human-Systems Inte-
gration and Air Traffic. Control Lincoln laboratory journal, vol. 19(1), pp. 34-49.
Parkinson P. and Kinnan L. (2015) Safety-Critical Software Development for Integrated Mod-
ular Avionics. Wind River, vol. 11, no. 2.
Tiedeman H. and Parkinson P. (2019) Experiences of Civil Certification of Multi-Core Process-
ing. Systems in Commercial and Military Avionics Integration Activities, vol. 1(2), pp. 419-428. 
doi: https://doi.org/10.3182/20110828-6- it-1002.01501.
Ghannem A., Hamdi M., Kessentini M. and Ammar H. (2017) Search-based requirements trace-
ability recovery: A multi-objective approach. Proc. IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1183-1190. doi: https://ieeexplore.ieee.org/document/7969440.
Neretin E. (2019) J. Phys.: Conf. Ser. 1353 012005. doi: https://iopscience.iop.org/article/ 
10.1088/1742-6596/1353/1/012005.
Murphy B. and Wakefield A. (2009) Early verification and validation using model-based design 
The MathWorks.
De Niz D. (2007) Diagrams and Languages for Model-Based Software Engineering of Embed-
ded Systems: UML and AADL, SEI.
Gilles O. and Hugues J. (2010) Expressing and Enforcing User-Defined Constraints of AADL 
Models. Engineering of Complex Computer Systems (ICECCS).
Martin S. and Minet P. (2006) Schedulability analysis of flows scheduled with FIFO: applica-
tion to the expedited forwarding class. Parallel and Distributed Processing Symposium.
Zelenov S. (2011) Planirovanie strogo periodicheskih zadach v sistemah real'nogo vremeni 
[Scheduling of Strictly Periodic Tasks in Real-Time Systems]. Trudy ISP RAN [The Proceedings 
of ISP RAS].
Konakhovych H., Kozlyuk I., Kovalenko Y. (2020) Specificity of optimization of performance 
indicators of technical operation and updating of radio electronic systems of aircraft. System 
research and information technologies, no. 3, pp. 41-54.
Kovalenko Y., Konakhovych H., Kozlyuk I. (2020) Specificity of optimization of performance 
indicators of technical operation and updating of radio electronic systems of aircraft. Interna-
tional Journal of Engineering Research and Applications (IJERA), vol. 10(09), pp. 48-58.
Kozlyuk І., Kovalenko Y. (2020) Functional bases of the software development and operation in 
avionics. Problems of Informatization and Management, no. 63, pp. 49-63.
Kovalenko Y., Kozlyuk І. (2020) Implementation of the integrated modular avionics applica-
tion development complex according to the ARINC653 standard, The Bulletin of Zaporizhzhіa 
National University: Physical and mathematical Sciences, no. 2.


