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Summary 
Radioresistance of the tumor cells remains a significant obstacle for the radiotherapy 

treatment of cancer. Radioresistance involves multiple genes, factors, and mechanisms that 
adapt cancer cells or tissues to radiotherapy-induced changes and develop resistance to ion-
izing radiation. The major studies of the effect of radiation on cells reported include the fol-
lowing areas: 1) the study of DNA damages and their repair; 2) mutations in tumor suppressor 
genes and radiation-induced oncogene expression; 3) the role of growth factors and cytokines;  
4) violation of the cell cycle; 5) elucidation of the mechanisms of apoptosis and necrosis. 

This review aimed to provide a theoretical basis, which may improve the sensitivity of 
cancer cells to radiotherapy. It focuses on the roles of tumor metabolism, DNA repair capacity, 
cell cycle checkpoints, and the tumor microenvironment in the development of radioresistance 
of cancer cells. Understanding the molecular alterations that lead to radioresistance may pro-
vide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. 
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1. Introduction

According to the latest studies, the main factors involved in the development of radiore-
sistance are the following: 1) DNA damage repair; 2) cell cycle arrest; 3) oncogene and tumor 
suppressor alterations; 4) changes in the tumor microenvironment; 5) autophagy (a protea-
some-independent degradation of cellular components); 6) the generation of cancer stem cells 
(undifferentiated cancer cells with high oncogenic activity, with the self-renewal ability and 
multi-directional differentiation potential); 7) tumor metabolism alterations (Chen et al., 2017; 
Fengsheng et al., 2016; Tang et al., 2018; Yoshida et al., 2016; Zhang et al., 2016).

Ionizing radiation induces a number of DNA damage, including single-strand breaks 
(SSB) and double-strand breaks (DSB), damage of nitrogenous bases and sugar residues, the 
formation of inter-strand and intra-strand crosslinks of DNA-DNA and DNA-protein, the 
appearance of chromosomal aberrations (Liu et al., 2021). Radiotherapy directly induces DNA 
damage or indirectly causes oxidative stress. Free hydroxyl radicals are considered the ion-
izing radiation-induced mediators of DNA damage, including SSB and DSB, which disturb 
the DNA structure, triggering cell death (Tang et al., 2018). Like most normal cells, tumor 
cells have reparative systems capable of repairing damage and restoring the native structure of 
DNA through specific mechanisms and enzymatic complexes. DNA damage may be recognized 
by detectors specific to different types of repair. 

Moreover, additional detector proteins are involved in the regulation of the cell cycle and 
are involved in the arrest or slowing of the cell cycle in the presence of DNA damage at various 
stages of the cell cycle. Here, an overview is provided to elucidate the interplay between tumor 
cell metabolism, DNA repair ability, microenvironment, and radioresistance. 
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2. Cell cycle redistribution in irradiated cells

Initial biological responses to radiation damage occur at the molecular, cellular, subcel-
lular levels and at intervals ranging from seconds to hours or days. Among the many manifes-
tations of the effect of ionizing radiation on cell viability, the most important is replicative cell 
death (suppression of the ability to divide).

The second type of replicative death of irradiated cells is the formation of so-called giant 
cells, which arise from the fusion of two neighboring, often "sister" cells. Such cells are capable 
of no more than 2-3 divisions, after which they die. Giant cells can form without fusion with 
a long delay in cell division of irradiated cells or their offspring. This method of cell death is 
inherent in aging cells and is observed after exposure to ionizing radiation. It is known that the 
sensitivity to radiation may also depend on the rate of proliferation of target cells (Erenpreisa 
et al., 2001; Suzuki et al., 2001).

As a result of DNA damage, cell growth may stop (Sia et al., 2020). At the heart of the 
events leading to cycle arrest in the G1 phase are reactions that increase the level of p53 protein, 
which, as a transcription factor, activates genes involved in cell cycle blockade (p21), induction 
of apoptosis (Bax), and repair (Gadd45). Ionizing radiation-induced ATM-dependent serine 
phosphorylation was found in p53 protein (Khanna et al., 1998). In addition, Chk2-catalyzed 
phosphorylation of serine 20 (Chechab et al., 2000) is also necessary for p53 stabilization, 
which inhibits p53 binding to MDM2. Chk2 kinase is activated by ATM (Ward et al., 2001), 
and thus, directly and indirectly, ATM is involved in p53 stabilizing by phosphorylation. Also, 
by phosphorylation of serine 395 in the MDM2 protein, ATM influences the ability of MDM2 
to bind p53 (Khosravi et al., 1999). The final result of phosphorylation is the destabilization 
of p53-MDM2 binding, stabilization of p53 protein, and its activation as a transcription factor, 
which allows blocking the cell cycle in the G1 phase. 

p21, an inhibitor of cyclin-dependent Cdk2 kinases, plays a fundamental role in blocking 
the cell cycle in the G1 phase. Inhibition of Cdk2/cyclin E kinases prevents phosphorylation 
of the Rb (Retinoblastoma) protein and the release of the transcription factor E2F. It blocks the 
transcription of many proteins needed to initiate DNA synthesis, thereby blocking the cell cycle 
at the G1 stage. In addition to induction of p21, the p53 protein also activates the transcription of 
other regulatory proteins: the 14-3-3 protein, responsible, among other things, for the removal 
of Cdc2 kinase from the nucleus, and the Gadd45 protein, which, apart from participating in the 
repair of DNA damage, also regulates the activity of Cdc2 kinase (Al Bitar et al., 2019). It was 
found that the different members of the 14-3-3 family of proteins could control p53 activity, and 
they could be alternative targets for the reactivation of p53 (Falcicchio et al., 2020). 14–3-3σ, a 
member of the 14–3-3 protein family, was closely associated with the radioresistance develop-
ment by arresting cancer cells in the G2/M phase (Chen et al., 2017).

Mammalian cells exposed to ionizing radiation can be blocked in the G2/M phase by 
inactivating and translocating the protein phosphatase Cdc25C, an activator of CDK kinases, 
resulting from its phosphorylation (serine 216) by Chk2 kinase (O'Connell et al., 2000). Chk2 
activation requires the presence of ATM and Nbs1 (Buscemi et al., 2001). It is impaired in AT 
(Ataxia-Telangiectasia) cells and in cells with inactive Nbs1 protein that is also defective at the 
G2/M checkpoint. The association of ATM with BRCA1 and the phosphorylation of BRCA1 
by ATM increases under the influence of ionizing radiation (Gatei et al., 2000) and contributes 
to cell cycle arrest in the G2 phase. 

The arrest of cells in the G1 phase under ionizing radiation occurs due to the trans-
activation of p21CIP/WAF1 by the p53 protein. p21CIP/WAF1 protein, in turn, inhibits 
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cyclin-dependent kinases and prevents the transition of cells to the S phase of the cell cycle, 
thus allowing DNA repair. (Al Bitar  et al., 2019; Morgan et al., 2015; Shu et al., 2007).

Cell arrest in the G1 phase of the cell cycle in response to ionizing radiation can also 
occur via the p53-independent signaling pathway. Thus, activated ATM kinase phosphorylates 
and activates c-ABL kinase, which, in turn, can activate p73, leading to transactivation of p21 
and GADD45 (Dasika et al., 1999; Lee et al., 1999).

Irradiation of cells causes a slowdown in the S phase of the cell cycle. ATM, NBS1, 
CHK2, Cdc25A, BRCA1, SMC1, MRE11, and others are involved in this process (Falck et 
al., 2002; Kastan et al., 2001). It has been reported that BRCA1 phosphorylation by ATM 
kinase is necessary for the radiation-induced arrest of cells in the S phase of the cell cycle (Xu 
et al., 2002).

Considering all the above, we can say that stopping cell growth due to exposure to ion-
izing radiation is also associated with either DNA repair or the apoptosis process required to 
eliminate cells that can’t repair damaged DNA.

3. DNA damage and repair in irradiated cells

A signaling cascade is triggered in response to DNA damage, consisting of sensory, 
transducer, and effector proteins, which can stop cell growth, repair DNA or, trigger cell death 
(apoptosis). Sensory proteins (RAD9, RAD1, RAD17, HUS1, and others) recognize DNA dam-
age and are likely to respond to it by directly linking double-stranded DNA breaks in mammalian 
cells. The RAD17 protein promotes the recognition of DNA damage by the RAD1-RAD9-HUS1 
complex. ATM/ATR kinase phosphorylates the effector kinases CHK1 and CHK2, which phos-
phorylate the p53 protein on the Ser20 residue and other target proteins in mammalian cells (Liu 
et al., 2021). A model was proposed, according to which changes in the structure of chromatin 
after DNA damage may contribute to the rapid activation of ATM kinase (Bakkenist et al., 2003).

It has been reported that histone H2AX phosphorylation occurs at the sites of dou-
ble-stranded DNA breaks with the participation of ATM kinase. H2AX is involved in creating 
specific DNA-repair complexes on damaged DNA (Sharma et al., 2012). At the same time, p53 
and the MDM2 protein, which mediates the degradation of p53, are phosphorylated directly by 
ATM kinase on Ser15 and Ser395 residues, respectively (Maya et al., 2001). The phosphoryla-
tion sites of p53 (Ser15 and Ser20) and MDM2 (Ser395) are localized in the region of interac-
tion of these proteins with each other. Thus, phosphorylation disrupts the binding of MDM2 to 
p53 and thus protects the p53 protein from ubiquitination and degradation (Marine et al., 2010). 
It has been discovered that in the offsprings of human fibrosarcoma cells of the HT1080 line, 
survived after exposure to X-ray irradiation at a dose of 6 Gy, slow down of the activation of 
p53 protein occurs (Suzuki et al., 2003).

Cells have many mechanisms that enable them to survive under genotoxic stress. The most 
important of these is the repair of DNA damage and blockage of the cell cycle. Restoration of 
a variety of DNA damage is possible thanks to the development of specialized repair systems, 
each of which is responsible for removing specific types of damage. Depending on the type 
of DNA damage, there are several main mechanisms of repair. Excision repair of nitrogenous 
bases is necessary to correct modified bases formed by the action of free radicals on DNA. This 
type of violation occurs by indirect damage of DNA by ionizing radiation. There are several 
stages of excision repair. In the first stage, the damaged nitrogenous base is cleaved by DNA 
glycosylases, which hydrolyze the N-glycosidic bond between the damaged base and the deoxy-
ribose residue. Deoxyribose without a nitrogenous base, the so-called apurinic/apyrimidinic 
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site (AP site), is excised by AP endonucleases. In the second stage, the formed “gap”, which 
has the size of one base, is repaired to the original sequence by the combined action of exo-
nucleases, polymerase, and DNA ligase. Repair of single-stranded DNA breaks occurs using a 
complementary DNA strand as a template (Jasin et al., 2013; Marsden et al., 2017). The pro-
tein poly-ADP-ribose polymerase (PARP) plays an essential role in the initiation of enzymes 
of excision repair. Even before the activation of repair enzymes, PARP binds to the rupture 
of DNA and prevents the destruction of free end regions of DNA. In addition, PARP, along 
with DNA-dependent protein kinase (DNA-PC) and ATM protein, is involved in providing a 
delay in the cell cycle, which is necessary to complete the repair process (Javle et al., 2011). 

Single strand breaks (SSB) may arise via direct radiation-induced DNA damage or as 
intermediaries formed during the repair of other single strand lesions (e.g., base excision repair 
of oxidized bases) (Morgan et al., 2015).

Double strand breaks (DSB) are the most dangerous type of DNA damage for a cell. 
They lead to the development of mutations and chromosomal rearrangements (aberrations), 
cell death, and the formation of genetic instability (Vitor et al., 2020). In eukaryotic organisms, 
two main mechanisms of repair double-strand DNA breaks have been identified: homologous 
recombination (HR) and non-homologous end-joining (NHEJ). In the HR, using the undam-
aged homologous DNA fragment as a template with a sequence complementary to at least 
one broken end occurs, whereas NHEJ does not require a homologous template (Brandsma et 
al., 2012; Frankenberg-Schwager et al., 2009; Mao et al., 2008).

The complex of proteins involved in double-stranded DNA breaks repairing by the HR 
mechanism includes ATM, BLM, BRCA1/2, c-ABL, RAD51/51C/51D/52/54, XRCC2/3, and 
others. Extensive studies have reported that radioresistance of hypoxic cancer cells is induced 
by the ATM-dependent DNA damage repair pathway, mainly through upregulation of HR 
mechanism of repair (Bencokova et al., 2009; Hashimoto et al., 2018; Olcina et al., 2014). 
In response to DNA strand breaks, the activated form of ATM phosphorylates some HR-related 
factors, such as BRCA1 and FANCD2, triggering the DNA damage repair pathway. It has been 
suggested that ATM also plays a pivotal role in the radioresistance of cancer cells under hypoxic 
conditions (Suwa et al., 2021).

A non-homologous joining occurs between ends of DNA that have non-homologous 
sequences or very short homologous regions. This reparation is not infallible and is often a 
source of genetic rearrangements (Mladenov et al., 2011; Morgan et al., 2015). Restoration of 
the original structure of DNA is possible only if the joining between the ends of the same strand 
of DNA occurs. If a process occurs between different molecules, it causes chromosomal aberra-
tions, such as deletions, insertions, translocations, and inversions. NHEJ mechanism is carried 
out by a complex of proteins, including DNA-dependent protein kinase (DNA-PK), Ku70, 
Ku86, DNA ligase IV, XRCC4, and others. In addition, proteins MRE11, RAD50, and NBS1 
(MRN complex) are involved in DNA damage repair by both the mechanism of HR and NHEJ 
(Her et al., 2018; Morgan et al., 2015). Tumor suppressors p53 and BRCA1 control the course 
of HR and NHEJ, but their effect on radioresistance remains the subject of intensive research 
(Gorodetska et al., 2019; Moureau et al., 2016). 

The inability of cells to repair double-stranded gaps leads to genome destabilization and 
tumors. In some cases, double-stranded DNA breaks contribute to the induction of apoptosis. 
Some researchers attribute the resistance of many cells to radiation to the kinetics and repair 
efficiency of single- and double-stranded DNA breaks, which can also serve as an additional 
method of monitoring the radiotherapeutic response in the clinic (Huang et al., 2020; Veleg-
zhaninov et al., 2020). 
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4. Tumor metabolism alterations in irradiated cells

Cancer cells can obtain sufficient oxygen only when they are localized close to tumor 
blood vessels. On the other hand, cancer cells far from functional blood vessels can get the 
minimal oxygen level necessary for their survival but insufficient for active proliferation (Suwa 
et al., 2021). Cancer cells in hypoxic regions produce ATP energy mainly via anaerobic gly-
colysis and generate lactate as a byproduct, leading to a unique microenvironment formation 
with a low pH. On the other hand, cancer cells farther away from blood vessels are deprived 
of oxygen and nutrients, and they die because of necrosis (Harada, 2011; Yeom et al., 2012). 
Cancer cells adapt to hypoxic conditions by inducing the expression of hypoxia-inducible fac-
tor 1 (HIF-1), which causes the expression of various pro-angiogenic factors, such as vascular 
endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Besides, HIF-1 
mediates the activation of the pentose phosphate pathway (PPP) (Meijer et al., 2012). The PPP, 
whose initial metabolite glucose-6-phosphate, is supplied via glycolysis, generates pentose sug-
ars and ribose-5-phosphate and generates NADPH as a byproduct (Patra et al., 2014). Because 
NADPH is a coenzyme of an antioxidant enzyme glutathione reductase, which converts oxi-
dized glutathione (GSSG) into reduced form (GSH), and ribose-5-phosphate is essential for 
nucleotide synthesis, so HIF-1-mediated activation of the PPP is associated with the radioresis-
tance of hypoxic cancer cells (Harada, 2016; Nakashima et al., 2017; Telarovic et al., 2021). 

Glucose transporter 1 (GLUT1) protein is involved in the glucose transport through 
the cellular membrane into the cell, and it is upregulated under hypoxic conditions (Chung 
et al., 2009). GLUT1 overexpression was reported to be associated with radioresistance and 
poor prognosis in patients with oral squamous cell carcinoma and head and neck squamous 
cell carcinoma (De Schutter et al., 2005; Kunkel et al., 2007). Radioresistant tumor cells often 
have high levels of GLUT1, which was associated with oncogene activation, tumor suppressor 
inactivation, hypoxia stimulation, and the regulation of different signaling pathways, such as 
MAPK and PI3K/AKT (Fang et al., 2015).

The elevated glycolysis rate facilitates the rejoining of radiation-induced DNA strand 
breaks by activating NHEJ and HR repair mechanisms, thus reducing the radiation-induced 
cytogenetic damage in cancer cells (Bhatt et al., 2015). 

5. Tumor microenvironment and radioresistance of cancer cells

Malignant tumor tissues consist of cancer cells and a wide variety of other cells respon-
sible for the inflammatory response, angiogenesis, immune response, and support of the tumor 
tissue architecture, forming a complex cellular society (Suwa et al., 2021). Many immunosup-
pressive processes increase the risk of tumor recurrence and metastasis, and immune evasion 
has emerged as a severe obstacle in cancer treatment (Tang et al., 2017). Changes in the cyto-
kine levels, epithelial-mesenchymal transition (EMT)-related processes, and hypoxic condi-
tions can promote radioresistance in tumor cells (Goffart et al., 2017; Krisnawan et al., 2020; 
Zhang et al., 2016). 

Recent studies have shown that tumor-associated macrophages (TAMs), which exist 
abundantly in tumor tissues, promote tumor growth and enhance radioresistance in various can-
cers (Brown et al., 2017; Dehne et al., 2017). TAMs induce the expression of cyclooxygenase-2 
(COX-2) – an enzyme participating in the synthesis of prostaglandin E2 (PGE2) which has been 
reported to accelerate tumor growth and induce radioresistance in cancers (Cook et al., 2016). 
In addition, it has been suggested that TAMs induce high expression of tumor necrosis factor-α 
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(TNF-α), promote angiogenesis, and facilitate tumor recurrence after radiotherapy (Meng 
et al., 2010). Vascular endothelial growth factor (VEGF) and platelet-derived growth factor 
(PDGF), secreted from M2-type macrophages, promote tumor regrowth after radiotherapy 
(Balkwill et al., 2001). It has been reported that some factors secreted from cancer-associated 
fibroblasts (CAFs) induce radioresistance in cancer cells. For example, CAFs secrete epider-
mal growth factor (EGF), insulin-like growth factor 2 (IGF2), and fibroblast growth factor 4 
(FGF4), which increase both the proliferation and the survival of cancer cells after irradiation 
(Chu et al., 2014; Krisnawan et al., 2020). Besides, stromal cell-derived factor 1 (SDF-1) and 
β-hydroxybutyrate secreted from CAFs induce autophagy in irradiated cancer cells and accel-
erate the regrowth of tumors (Wang et al., 2017). 

In addition, non-irradiated cells may receive apoptotic signals from neighboring irra-
diated cells through the bystander effect, inducing the non-irradiated cells to exhibit similar 
biological effects to those of the irradiated cells (Chevalier et al., 2015). 

6. Conclusions

Radioresistance of cancer cells can be provided by more than one mechanism. Radio-
therapy may induce alterations in many molecules and signaling pathways involved in the 
tumor cell metabolism, and radiation-induced metabolic changes in cancer cells may affect 
the efficacy of radiotherapy. Cancer cells undergo a range of interphase and mitotic death after 
irradiation via direct and indirect effects of ionizing radiation. Although most radiation-induced 
DNA breaks in cancer cells are rapidly repaired, residual breaks or erroneous DNA repair lead 
to genetic instability, increased mutation rates, and chromosomal aberrations. An increased 
understanding of the molecular mechanisms of radiation-induced cell death will reveal novel 
opportunities for improving the overall anti-tumor efficacy of radiation therapy. 
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