POTENTIOMETRIC DETERMINATION OF THE ANTIOXIDANT ACTIVITY OF MEDICINAL PLANTS
Abstract
The article deals with the analysis of the existing methods of investigating the antioxidant activity of plants’ origin and the expediency of measuring oxidation-reduction potential for this purpose.The integral AOA of alcohol extracts Urtica dioica, Trifolium pretense, Chelidonium majus, Hippophae rhamnoides has been determined by potentiometric method using the mediator system. It was established that the leaves of sea – buckthorn are characterised by the highest antioxidant activity (2.05 ± 0.1 mg AA / ml). The АОА of plants Urtica dioica, Chelidonium majus, that were growing along the transport zone is higher by 23,1-27,9% comparing with the plants collected from environmentally friendly area. It was found out that the plants of Hippophae rhamnoides L. coriander were adapted to oil pollution, as evidenced by the absence of a significant difference between AOA of plants collected from environmentally friendly area comparing with the plants that were growing on the soil polluted with petroleum products.
References
Aronbaev, D. M., Ten, V. A., Yulaev, M. F., Aronbaev, S. D. (2015). The investigation of antioxidant activity of the plant vegetation of Fergana Valley. Young scientist, 4 (84), 30–34. [in Russian].
Brainina, Kh. Z., Ivanova, A. V., Sharafutdinova, E. N. (2004). The evaluation of antioxidant activity of food products by potentiometric method. The news of higher educational establishments. Food technology, 4, 73–75. [in Russian].
Chatterjee, S., Poduval, T. B., Tilak, J. C. et.al. (2005). A modified, economic, sensitive method for measuring total antioxidant capacities of human plasma and natural compounds using Indian saffron (Crocus sativus). Clinica Chimica Acta, 352, 155–163. DOI:10.1016/j.cccn.2004.09.012. [in English].
Choi, I. S., Cha, H. S., Lee, Y. S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19, 16811–16823. DOI:10.3390/molecules191016811. [in English].
Harasym, J., Oledzki, R. (2014). Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition, 30, 511–517. DOI: 10.1016 / j.nut.2013.08.019. [in English].
Hu, Y., Pan, Z., Liao, W. et. al. (2016). Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance–Fourier transformed–infrared spectroscopy. Food Chemistry, 202, 254–261. DOI: 10.1016 / j.foodchem.2016.01.130. [in English].
Khan, R. A. (2012). Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chemistry Central Journal, 6, 126. DOI: 10.1186 / 1752-153X-6-126. [in English].
Lucio, M., Nunes, C., Gaspar, D. et.al. (2009). Antioxidant activity of vitamin E and Trolox: understanding of the factors that govern lipid peroxidation studies in vitro. Food Biophys, 4, 312–320. DOI: 10.1007 / s11483-009-9129-4. [in English].
Lupak, O., Kovalchuk, H., Antonyak, H. (2017). Potentiometric determination of antioxidant activity of extracts of Calendula officinalis L. plants under the influence of growth biostimulants. Scientific Journal «Science Rise: Biological Science», 6 (9), 10-13. DOI: 10.15587/2519-8025.2017.119086. [In Ukrainaian].
Martin, I., Aspee, A., Torres, P. et. al. (2009). Influence of the target molecule on the oxygen radical absorbance capacity index: a comparison between alizarin red– and fluorescein–based methodologies. Journal of Medicinal Food, 12, 1386–1392. DOI: 10.1089 / jmf.2009.0024. [in English].
Nilsson, J., Pillai, D., Onning, G. et. al. (2006). Comparison of the 2,2'– azinobis–3–ethylbenzotiazo–line–6–sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Molecular Nutrition & Food Research, 49, 239–246. [in English].
Papastergiadis, A., Mubiru, E., Van Langenhove, H. (2012). Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. Journal of Agricultural and Food Chemistry, 38, 9589–9594. DOI: 10.1021 / jf302451c. [in English].
Pharmakopoeia of Ukraine. (2008). State enterprise «Scientific Experts Pharmakopoeia Center» Kharkiv: RIHER. [in Ukrainaian].
Polumbryk, M., Polumbryk, O., Pasichnyi, V., Omelchenko, Kh. et all. (2016). The evaluation of antioxidant activity of natural compounds. Food industry AC, 6, 5–9. [in Ukrainaian].
Sharafutdinova, E. N., Ivanova, A. V., Brainina, Kh. Z. (2004). The evaluation of antioxidant activity of food products by potentiometric method. The news of higher educational establishments. Food technology, 4, 27–29. [in Russian].
Shevchyk, L., Romaniuk, O. (2017). The analysis of biological ways of restoration of the oil contaminated soils. Scientific Journal «ScienceRise: Biological Science», 1 (4), 31-39. DOI: 10.15587/2519-8025.2017.94052. [in English].
Toth, M., Kukor, Z., Valent, S. (2002). Chemical stabilization of tetrahydrobiopterin by L–ascorbic acid: contribution to placental endothelial nitric oxide synthase activity. Molecular Human Reproduction, 8, 271–280. DOI: 10.1093/molehr/8.3.271. [in English].
Trindade, C., Bortolini, G. V., Costa, B. S. et. al. (2016). Antimutagenic and antioxidant properties of the aqueous extracts of organic and conventional grapevine Vitis labrusca cv. Isabella leaves in V79 cells. J. Toxicol. Environ. Health A., 79, 825–836. DOI: 10.1080 / 15287394.2016.1190675. [in English].
Zenkov, N. K., Lankin, V. Z., Menytsikova, E. B. (2001). Oxidative stress: Biochemical and patophysiological aspects. Мoscow: MAIK «Science/Interperiodics», 343. [in Russian].
Zhang, Y. J., Gan, R. Y., Li, S. et. al. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20 (12), 21138–21156. DOI: 10.3390/molecules201219753. [in English].
Abstract views: 461 PDF Downloads: 219