DIETARY FIBER IN REDUCING OF ELEVATED BLOOD LEAD CONCENTRATION IN CHILDREN

Słowa kluczowe: environment, public health, lead exposure, oxidative stress, rehabilitation.

Abstrakt

The aim of the study was to evaluate the effectiveness of dietary fiber in reducing elevated blood lead concentration (BLC) of Ukrainian children. Materials and methods. 80 random children aged 4 to 15 years were examined. The lead content in venous blood was detected by atomic absorption spectrometry with electro-thermal atomizer (ET AAS). Indicators of morphological and biochemical blood tests were determined by generally accepted methods. Results. About a quarter of the children had BLC ≥ 5μg/dL. They had a higher content of eosinophil cells, an increase of ALT activity in the blood compared to children with lower BLCs. As a nutritional supplement for the rehabilitation of these children, dietary fiber from cereals of 10 g per day was used for 30 days, as an addition to main dishes and salads during lunch. As a result, BLC significantly decreased. At the same time, the number of eosinophils in blood and the activity of ALT significantly decreased. The thiol-disulfide ratio increased. Children tolerated nutritional intervention well. Its safety was also indicated by the absence of changes in indicators of the functional state of the liver. This allows us to recommend this dietary supplement for the improvement of children undergoing environmental lead pressure.

Wykaz bibliografii

1. Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A. (2023). Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics, 11(7), 580. https://doi.org/10.3390/toxics11070580
2. Awadh, S. M., Yaseen, Z. M., & Al-Suwaiyan, M. S. (2023). The role of environmental trace element toxicants on autism: A medical biogeochemistry perspective. Ecotoxicology and environmental safety, 251, 114561. https://doi.org/10.1016/j.ecoenv.2023.114561
3. Capitão, C., Martins, R., Santos, O., Bicho, M., Szigeti, T., Katsonouri, A., Bocca, B., Ruggieri, F., Wasowicz, W., Tolonen, H., & Virgolino, A. (2022). Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Frontiers in pediatrics, 10, 921239. https://doi.org/10.3389/fped.2022.921239
4. Destro, A. L. F., da Silva Mattosinhos, P., Novaes, R. D., Sarandy, M. M., Gonçalves, R. V., & Freitas, M. B. (2023). Impact of plant extracts on hepatic redox metabolism upon lead exposure: a systematic review of preclinical in vivo evidence. Environmental science and pollution research international, 30(40), 91563–91590. https://doi.org/10.1007/s11356-023-28620-8
5. Disalvo, L., Cassain, V., Fasano, M. V., Zar, G., Varea, A., & Virgolini, M. B. (2022). Environmental exposure to lead and oxidative stress biomarkers among healthy children in La Plata, Argentina. Exposición ambiental a plomo y biomarcadores de estrés oxidativo en niños sanos de La Plata, Argentina. Archivos argentinos de pediatria, 120(3), 174–179. https://doi. org/10.5546/aap.2022.eng.174
6. Du, Y., Ai, S., He, J., Gu, H., Wang, X., Li, Z., & Dang, Y. (2023). Health risk assessment of lead via the ingestion pathway for preschool children in a typical heavy metal polluted area. Environmental Geochemistry and Health, 45, 6163–6176. https://doi.org/10.1007/ s10653-023-01619-3
7. Emond A. M. (2022). Lead poisoning cannot be consigned to history books yet: new guidance to help us to reach that goal. Archives of disease in childhood, 107(4), 313–314. https:// doi.org/10.1136/archdischild-2019-318756
8. Gebrayel, P., Nicco, C., Al Khodor, S., Bilinski, J., Caselli, E., Comelli, E. M., Egert, M., Giaroni, C., Karpinski, T. M., Loniewski, I., Mulak, A., Reygner, J., Samczuk, P., Serino, M., Sikora, M., Terranegra, A., Ufnal, M., Villeger, R., Pichon, C., Konturek, P., … Edeas, M. (2022). Microbiota medicine: towards clinical revolution. Journal of translational medicine, 20(1), 111. https://doi.org/10.1186/s12967-022-03296-9
9. Halabicky, O. M., Téllez-Rojo, M. M., Miller, A. L., Goodrich, J. M., Dolinoy, D. C., Hu, H., & Peterson, K. E. (2023). Associations of prenatal and childhood Pb exposure with allostatic load in adolescence: Findings from the ELEMENT cohort study. Environmental research, 235, 116647. Advance online publication. https://doi.org/10.1016/j.envres.2023.116647
10. Halmo, L., & Nappe, T. M. (2023). Lead Toxicity. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK541097/
11. Hojsak, I., Benninga, M. A., Hauser, B., Kansu, A., Kelly, V. B., Stephen, A. M., Morais Lopez, A., Slavin, J., & Tuohy, K. (2022). Benefits of dietary fibre for children in health and disease. Archives of disease in childhood, 107(11), 973–979. https://doi.org/10.1136/archdischild- 2021-323571
12. Karim, A., Raji, Z., Karam, A., & Khalloufi, S. (2023). Valorization of Fibrous Plant-Based Food Waste as Biosorbents for Remediation of Heavy Metals from Wastewater-A Review. Molecules (Basel, Switzerland), 28(10), 4205. https://doi.org/10.3390/molecules28104205
13. Knez, E., Kadac-Czapska, K., Dmochowska-Ślęzak, K., & Grembecka, M. (2022). Root Vegetables-Composition, Health Effects, and Contaminants. International journal of environmental research and public health, 19(23), 15531. https://doi.org/10.3390/ ijerph192315531
14. Levin, R., Zilli Vieira, C. L., Rosenbaum, M. H., Bischoff, K., Mordarski, D. C., & Brown, M. J. (2021). The urban lead (Pb) burden in humans, animals and the natural environment. Environmental research, 193, 110377. https://doi.org/10.1016/j.envres.2020.110377
15. Mathers J. C. (2023). Dietary fibre and health: the story so far. The Proceedings of the Nutrition Society, 82(2), 120–129. https://doi.org/10.1017/S0029665123002215
16. Nadler A. (2022). Lead poisoning in children: emergency department recognition and management. Pediatric emergency medicine practice, 19(4), 1–20. https://www.ebmedicine.net/topics/ toxicology-environmental/pediatric-emergency-medicine-lead-poisoning
17. Olufemi, A. C., Mji, A., & Mukhola, M. S. (2022). Potential Health Risks of Lead Exposure from Early Life through Later Life: Implications for Public Health Education. International journal of environmental research and public health, 19(23), 16006. https://doi.org/10.3390/ ijerph192316006
18. Ooi, T. C., Singh, D. K. A., Shahar, S., Sharif, R., Rivan, N. F. M., Meramat, A., & Rajab, N. F. (2022). Higher Lead and Lower Calcium Levels Are Associated with Increased Risk of Mortality in Malaysian Older Population: Findings from the LRGS-TUA Longitudinal Study. International journal of environmental research and public health, 19(12), 6955. https:// doi.org/10.3390/ijerph19126955
19. Proshad, R., & Idris, A. M. (2023). Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. Environmental science and pollution research international, 30(32), 79525–79550. https://doi. org/10.1007/s11356-023-27977-0
20. Puhlmann, M. L., & de Vos, W. M. (2022). Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Frontiers in immunology, 13, 954845. https://doi.org/10.3389/fimmu.2022.954845
21. Rawat, P. S., Singh, S., Zahid, M., & Mehrotra, S. (2021). An integrated assessment of lead exposure in children: Correlation with biochemical and haematological indices. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 68, 126835. https://doi.org/10.1016/j.jtemb.2021.126835
22. Salvatore, S., Battigaglia, M. S., Murone, E., Dozio, E., Pensabene, L., & Agosti, M. (2023). Dietary Fibers in Healthy Children and in Pediatric Gastrointestinal Disorders: A Practical Guide. Nutrients, 15(9), 2208. https://doi.org/10.3390/nu15092208
23. Suriano, F., Nyström, E. E. L., Sergi, D., & Gustafsson, J. K. (2022). Diet, microbiota, and the mucus layer: The guardians of our health. Frontiers in immunology, 13, 953196. https://doi. org/10.3389/fimmu.2022.953196
24. Swaringen, B. F., Gawlik, E., Kamenov, G. D., McTigue, N. E., Cornwell, D. A., & Bonzongo, J. J. (2022). Children's exposure to environmental lead: A review of potential sources, blood levels, and methods used to reduce exposure. Environmental research, 204(Pt B), 112025. https://doi.org/10.1016/j.envres.2021.112025 25. Venter, C., Meyer, R. W., Greenhawt, M., Pali-Schöll, I., Nwaru, B., Roduit, C., Untersmayr, E., Adel-Patient, K., Agache, I., Agostoni, C., Akdis, C. A., Feeney, M., Hoffmann-Sommergruber, K., Lunjani, N., Grimshaw, K., Reese, I., Smith, P. K., Sokolowska, M., Vassilopoulou, E., Vlieg-Boerstra, B., … O'Mahony, L. (2022). Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy, 77(11), 3185–3198. https://doi.org/10.1111/all.15430
26. WHO guideline for the clinical management of exposure to lead. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/ item/9789240037045
27. WHO. Lead poisoning. 11 August 2023. https://www.who.int/news-room/fact-sheets/detail/ lead-poisoning-and-health
28. Yao, M., Shao, X., Wei, Y., Zhang, X., Wang, H., & Xu, F. (2022). Dietary fiber ameliorates lead-induced gut microbiota disturbance and alleviates neuroinflammation. Journal of the science of food and agriculture, 102(15), 6795–6803. https://doi.org/10.1002/jsfa.12074
29. Zhang, J., Su, P., Xue, C., Wang, D., Zhao, F., Shen, X., & Luo, W. (2022). Lead Disrupts Mitochondrial Morphology and Function through Induction of ER Stress in Model of Neurotoxicity. International journal of molecular sciences, 23(19), 11435. https://doi.org/10.3390/ ijms231911435
30. Zhao, G., Liu, S. J., Gan, X. Y., Li, J. R., Wu, X. X., Liu, S. Y., Jin, Y. S., Zhang, K. R., & Wu, H. M. (2023). Analysis of Whole Blood and Urine Trace Elements in Children with Autism Spectrum Disorders and Autistic Behaviors. Biological trace element research, 201(2), 627–635. https://doi.org/10.1007/s12011-022-03197-4
31. Zheng, K., Zeng, Z., Tian, Q., Huang, J., Zhong, Q., & Huo, X. (2023). Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. The Science of the total environment, 868, 161691. https://doi.org/10.1016/j.scitotenv. 2023.161691
32. Zhou, M., & Zheng, S. (2022). Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress. International journal of molecular sciences, 23(24), 15968. https://doi. org/10.3390/ijms232415968

Abstract views: 73
PDF Downloads: 52
Opublikowane
2023-11-16
Dział
ZDROWIE, ŚRODOWISKO, ROZWÓJ