MODERN METHODS OF GEAR MILLING OF HARDENED LARGE-MODULE GEARS
Abstrakt
The latest developments of modern methods of high-speed gear milling of large-module cylindrical gears, both for preliminary grinding of teeth and for final blade processing of gears, are considered. For high-speed blade gear processing, promising designs of worm carbide cutters have been developed, manufactured and implemented. The technological regulations of blade gear processing for the operation of each of the design solutions of worm carbide cutters have been developed. The design of a special double-body worm cutter for double-sided cutting has been developed. It is shown that the carbide cutting elements of the milling cutters, which are placed only along the lines of the machine engagement of the tool and the workpiece, make it more economical compared to the known designs of similar tools. The application of the developed technological methods of pre-blade processing of the teeth of hardened wheels with carbide cutters reduces the labor intensity of low-performance gear grinding operations, depending on the wheel module, by 3-4 times by reducing the allowance from 1.5–2.5 mm on the tooth side to 0.3–0.5 mm, and also allows you to ensure the gear processing process is economical by reducing the consumption of carbide plates. The developed technological studies of ensuring the quality of gear processing of large-module cylindrical wheels allow us to solve the scientific and technical problem associated with the production of large-module gears with high-hardness teeth while improving the quality of their manufacture, reducing labor costs and reducing material consumption.
Wykaz bibliografii
2. Artoni, A. (2019). A methodology for simulation-based, multiobjective gear design optimization. Mechanism and Machine Theory, no. 133, pp. 95-111. Retrieved from: https://www.sciencedirect.com/science/ article/abs/pii/S0094114X18307316
3. Czerniec, M., Kiełbiński, J., & Czerniec, J. (2019). Computer Simulation of the Impact of Optimization of Width in the Helical Cylindrical Gear on Bearing and Durability. Part 1. Height Correction of the Gear Profile. Advances in Science and Technology. Research Journal, Vol. 13, no. 1, pp. 52-59. [in Poland]
4. Czerniec, M. (2019). Computer Simulation of the Impact of Optimization of Width in the Helical Cylindrical Gear on Bearing and Durability Part 1. Height Correction of the Gear Profile. Advances in Science and Technology. Research Journal, Vol. 13, no. 1. [in Poland]
5. Dhafer, W. A. R., Kostyk, V., Kostyk, K., Glotka, A., & Chechel, M. (2016). The choice of the optimal temperature and time parameters of gas nitriding of steel. Vostochno-Evropejskij zhurnal peredovyh tehnologij, no. 3(5), pp. 44-50. [in Ukrainian]
6. Gasanov, M. I. (2018). Tverdosplavnye chervyachnye frezy posle almaznoj zatochki dlya vosstanovleniya krupnogabaritnyh zubchatyh koles [Carbide worm cutters after diamond sharpening for the restoration of large-sized gears]. Rezanie i instrumenty v tehnologicheskih sistemah: Mezhdunar. nauch.-tehn. sb., Kharkiv: NTU «KhPI». Int. 88, pp. 32-42. [in Ukrainian]
7. Gavranovic, S., Hartmann, D., & Wever, U. (2019). Topology optimization using gpgpu. In Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pp. 553-566. Springer, Cham. Retrieved from: https://link.springer.com/chapter/10.1007/978-3-319-89988-6_33
8. Gołębski, R., & Ivandic, Z. (2018). Analysis of Modification of Spur Gear Profile. Tehnicki Vjesnik, no. 25(2), pp. 643-648. Retrieved from: https://hrcak.srce.hr/index.php?show=clanak& id_clanak_jezik=293228
9. Iurchyshyn, O. Ya., Okhrimenko, O. A., Dmytro, O. R., Kostyk, K. O., & Klochko, O. O. (2019). Morfolohichnyi analiz konstruktorsko-tekhnolohichnykh parametriv vysokotochnykh, vazhko navantazhenykh, velykohabarytnykh zubchatykh reiok vidpovidalnykh reikovykh peredach [Morphological analysis of design and technological parameters of high-precision, heavyloaded, large-sized gear racks of critical rack-and-pinion gears]. Nauka ta vyrobnytstvo, no. 21. Retrieved from: http://sap.pstu.edu/article/view/187603 [in Ukrainian]
10. Jian, K., Li-Ping, Z., & Wen-Qiang, Y. (2013). Optimization Design of a Gear Profile Based on Governing Equations. Research Journal of Applied Sciences, Engineering and Technology, Vol. 5, no. 19, pp. 4780-4784.
11. Klochko, A. A., Skorkin, A. O., Kamchatnaya-Stepanova, E. V., Starchenko, E. P., & Ishenko, M. G. (2020). Sovremennye metody tehnologii formoobrazovaniya krupnomodulnyh zubchatyh koles [Modern methods of forming technology of large-module gears]. Znanstvena misel, agricultural sciences, no. 48-1, pp. 25-29. [in Slovenia]
12. Kostyk, V. O., Kostyk, K. O., Kovalov, V. D., Turmanidze, R., & Dašić, P. (2019, July). Increase of operational properties of tools and machine parts nitriding the powder mixture. In IOP Conference Series: Materials Science and Engineering, Vol. 568, no. 1, p. 012118. IOP Publishing.
13. Kostyk, K.О. (2016). Poverkhneve dvosharove zmitsnennia stali pry poslidovnomu nasychenni vuhletsem ta borom v poroshkovykh makro-ta nanodyspersnykh seredovyshchakh [Surface twolayer hardening of Steel under constant saturation with carbon and boron in powder macro – and nanodisperse media]. Visnyk Natsionalnoho tekhnichnoho universytetu Kharkivskyi politekhnichnyi instytut. Seriia: Novi rishennia v suchasnykh tekhnolohiiakh, no. 42, pp. 54-63. [in Ukrainian]
14. Kostyk, K.О. (2015). Rozrobka tekhnolohii mistsevoho poverkhnevoho zmitsnennia zubchatoho tsylindrychnoho kolesa vidtsentrovanoho zmishuvacha [Development of technology for local surface hardening of the gear cylindrical wheel of a centrifugal mixer]. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni, no. 2, pp. 39-43. [in Ukrainian]
15. Kostyuk, G. I., Popov, V. V., & Kostyk, K. O. (2019). Konstruirovanie materiala rezhushego instrumenta s uchetom tipa uprochneniya nanopokrytij [Design of the cutting tool material taking into account the type of nanocoating hardening]. Tehnologicheskie sistemy, no. 87/2, pp. 25-37 [in Ukrainian]
16. Masjedi, M., Khonsari. M.M. (2015). On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load, Tribol. Int. 82, pp. 228-244. Retrieved from: https://www.sciencedirect.com/science/article/abs/pii/S0301679X1400334X
17. Mironenko, E. V., Klochko, A. A., Shapovalov, V. F., & Chmyr, V. A. (2013). Sovershenstvovanie tehnologii zubonarezaniya chervyachnymi modulnymi frezami s kontaktnoreaktivnoj pajkoj rezhushih plastin [Improving the technology of gear cutting with worm modular cutters with contact-reactive soldering of cutting plates]. Nadezhnost instrumenta i optimizaciya tehnologicheskih sistem, Kramatorsk: DGMA, Int. 33, pp. 3-7. [in Ukrainian]
18. Mironenko, E. V., Shapovalov, V. F., Klochko, A. A., Palashek, S. Yu., & Ostapovich, E. V. (2015). Konstruktorsko-tehnologicheskie sposoby povysheniya proizvoditelnosti i kachestva zuboobrabotki krupnogabaritnyh zubchatyh vencov [Design and technological methods for improving the productivity and quality of gear processing of large-sized gear rings] Visnyk NTU «KhPI». Seriia: Tekhnolohii v mashynobuduvanni. Kharkiv: NTU «KhPI», Vol. 4, no. 1113, pp. 28–32. [in Ukrainian]
19. Mohammadkhani, R., Nemati, D., & Babaei B. (2012). Optimizing Helical Gear Profile for Decreasing Gearbox Noise. Journal of Basic and Applied Research International, Vol. 2, pp. 6685-6693.
20. Nazapov, Yu. F., Ivanajskij, A. V., Svipidenko, D. S., & Ppokofev, A. V. (2009). Nanotehnologiya mehanicheskoj obpabotki detalej mashin [Nanotechnology of mechanical processing of machine parts]. Tehnologiya mashinostroeniya, no. 6, pp. 9-10. [in Ukrainian]
21. Nechyporuk, M., & Kostyk, K. (2020, March). Study of Ions Energy, Their Varieties and Charge on Temperature, Rate of Temperature Rise, Thermal Stresses for Nanostructures on Construction Materials. In Advanced Manufacturing Processes: Selected Papers from the Grabchenko’s International Conference on Advanced Manufacturing Processes, Springer Nature. Odessa. p. 470. [in Ukrainian]
22. Permyakov, A. A., Yurchishin, O. Ya., Perminov, E. V., & Shepelev, D. K. (2020). Innovacionnye tehnologicheskie napravleniya dlya obespecheniya stabilizacii processa obrabotki zubchatyh reek [Innovative technological directions for ensuring the stabilization of the gear rack processing process]. Visnyk NTU «KhPI». Seriia: Tekhnolohii v mashynobuduvanni. Kharkiv: NTU «KhPI», no. 2, pp. 16-21. [in Ukrainian]
23. Popov, V., Kostyuk, G., Nechyporuk, M., & Kostyk, K. (2019, September). Study of Ions Energy, Their Varieties and Charge on Temperature, Rate of Temperature Rise, Thermal Stresses for Nanostructures on Construction Materials. In Grabchenko’s International Conference on Advanced Manufacturing Processes. Springer, Cham. pp. 470-477. Retrieved from: https://link.springer.com/chapter/10.1007/978-3-030-40724-7_48. [in Ukrainian]
24. Shapovalov, V. F., Pechenyj, V. I., Korotun, A. N., Klochko, A. A., & Mihajlov, G. I. (2009). O patriarhe zuboobrabotki ak. Sidorenko. [About the patriarch of dental treatment ak. Sidorenko]. Visnyk NTU «KhPI»: zb. nauk. pr. Tematychnyi vypusk: Problemy mekhanichnoho pryvodu. Kharkiv: NTU «KhPI», no. 20, pp. 3-7. [in Ukrainian]
25. Stokes, J. (2008). The theory and application of the HVOF thermal spray process. Dublin City University, Dublin, 206 p., pp. 1-14.
26. Suslov, A. G., Ryzhov, E. V., Suslov, A. G., & Fyodorov, V. P. (2006). Tehnologicheskoe obespechenie i povyshenie ekspluatacionnyh svojstv detalej i ih soedinenij [Technological support and improvement of operational properties of parts and their connections]. Moskva: Mashinostroenie, 447 p. [in Russian]
27. Suslov, A. G., Fedorov, V. P., Nagorkin, M. N., & Pyrikov, I. L. (2018). Kompleksnyj podhod k eksperimentalnym issledovaniyam tehnologicheskih sistem metalloobrabotki po obespecheniyu parametrov kachestva i ekspluatacionnyh svojstv poverhnostej detalej mashin [A comprehensive
28. approach to experimental research of technological systems of metalworking to ensure the quality parameters and operational properties of the surfaces of machine parts]. Naukoemkie tehnologii v mashinostroenii, Vol. 10, pp. 3-13. [in Ukrainian]
29. Timofeev, Yu. V., Klochko, A. A., & Shapovalov, V. F. (2010). Tehnologiya zubofrezerovaniya zakalennyh krupnomodulnyh koles specialnymi chervyachnymi frezami s minimiziruyushimi parametrami glavnyh rezhushih kromok [Technology of gear milling of hardened large-module wheels with special worm cutters with minimizing parameters of the main cutting edges]. Naukovi notatky: mizhvuz. zb, Lutsk, Int. 29, pp. 209–216. [in Ukrainian]
Abstract views: 207 PDF Downloads: 171